
KIT: Testing OS-Level Virtualization
for Functional Interference Bugs

Congyu Liu
Purdue University

West Lafayette, Indiana, USA

Sishuai Gong
Purdue University

West Lafayette, Indiana, USA

Pedro Fonseca
Purdue University

West Lafayette, Indiana, USA

ABSTRACT

Container isolation is implemented through OS-level virtualization,
such as Linux namespaces. Unfortunately, these mechanisms are ex-
tremely challenging to implement correctly and, in practice, suffer
from functional interference bugs, which compromise container se-
curity. In particular, functional interference bugs allow an attacker
to extract information from another container running on the same
machine or impact its integrity by modifying kernel resources that
are incorrectly isolated. Despite their impact, functional interfer-
ence bugs in OS-level virtualization have received limited attention
in part due to the challenges in detecting them. Instead of causing
memory errors or crashes, many functional interference bugs in-
volve hard-to-catch logic errors that silently produce semantically
incorrect results.

This paper proposes KIT, a dynamic testing framework that
discovers functional interference bugs in OS-level virtualization
mechanisms, such as Linux namespaces. The key idea of KIT is
to detect inter-container functional interference by comparing the
system call traces of a container across two executions, where it
runs with and without the preceding execution of another con-
tainer. To achieve high efficiency and accuracy, KIT includes two
critical components: an efficient algorithm to generate test cases
that exercise inter-container data flows and a system call trace
analysis framework that detects functional interference bugs and
clusters bug reports. KIT discovered 9 functional interference bugs
in Linux kernel 5.13, of which 6 have been confirmed. All bugs are
caused by logic errors, showing that this approach is able to detect
hard-to-catch semantic bugs.

CCS CONCEPTS

• Security and privacy→ Virtualization and security; • Soft-
ware and its engineering→ Software testing and debugging.

KEYWORDS

OS-level virtualization, software testing

ACM Reference Format:

Congyu Liu, Sishuai Gong, and Pedro Fonseca. 2023. KIT: Testing OS-Level
Virtualization for Functional Interference Bugs. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS ’23), March 25–29,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9916-6/23/03.
https://doi.org/10.1145/3575693.3575731

2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3575693.3575731

1 INTRODUCTION

Kernel resource isolation is vital for reliable and secure container
isolation. In particular, correct kernel resource isolation must pre-
vent functional interference across containers running on the same
machine. In practice, Linux containers are implemented using ker-
nel namespaces, which prevent a container from accessing (i.e., read-
ing or modifying) resources from other containers, except through
authorized means (e.g., valid communication channels). Since func-
tional interference bugs compromise the integrity and confidential-
ity of containers, they are a major security concern.

Incorrect or insufficient kernel resource isolation can seriously
impact container security, especially in multi-tenant environments.
In fact, cloud providers are often hesitant to use containers in multi-
tenant situations for security reasons [83]. For instance, incorrect
isolation might let attackers learn the credentials of another con-
tainer running on the same machine, which could further lead to
cascading attacks on other network-accessible systems [34]. Fur-
thermore, applications critically make assumptions about the ser-
vices provided by the kernel. Hence, even when incorrect isolation
only allows attackers limited resource control, it can enable the
exploitation of application bugs that further aggravate the attack
impact.

Unfortunately, implementing resource isolation is particularly
challenging for kernel developers. This challenge arises from the
myriad of kernel resources available (e.g., sockets, files, and timers),
which are accessible through the notoriously extensive system call
interface [48], and the huge kernel code base. Implementing kernel
resource isolation requires adding logical checks, often deep inside
the kernel and on each resource access instance, to verify whether
the container is allowed to access a resource. This challenge com-
pounds with the complexity of more traditional kernel mechanisms,
such as processes, users, and groups. Crucially, a single missed or
incorrect check can compromise container security. Thus, it is not
surprising that many functional interference bugs have been re-
cently discovered in Linux namespaces, leading to cross-container
information leakage [15, 19], denial of service [13, 16, 17], and
privilege escalation attacks [14, 21].

Unlike more traditional kernel bugs, such as crashes, functional
interference bugs are particularly challenging to detect automati-
cally. In fact, functional interference bugs are often caused by hard-
to-catch logic errors [14, 15, 17, 19, 21] that do not cause immediate
failures, such as missing results or producing error/warning mes-
sages. Thus, traditional kernel fuzzing tools, such as Syzkaller [39],
which mainly target bugs involving memory errors [40, 58] (e.g.,

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

427

https://doi.org/10.1145/3575693.3575731
https://doi.org/10.1145/3575693.3575731
https://doi.org/10.1145/3575693.3575731
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://creativecommons.org/licenses/by/4.0/

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Congyu Liu, Sishuai Gong, and Pedro Fonseca

out-of-bound, data race) or obvious failures, cannot comprehen-
sively detect functional interference bugs. Furthermore, while some
work [34, 83, 86] has been proposed to address this class of bugs, it
is limited to a narrow subset of functional interference bugs.

This paper presents KIT1, a dynamic testing framework to sys-
tematically test OS-level virtualization mechanisms for functional
interference bugs. KIT uses functional interference testing, a general
and principled approach to effectively detect logical errors that
compromise container isolation. Functional interference testing
conservatively checks whether the kernel enforces strict functional
non-interference [37], a strong isolation property, on protected
kernel resources.

KIT systematically generates test cases that aim to maximize
interference between two programs running in different containers,
by issuing carefully crafted system calls and detecting interference
across containers. These programs play the roles of a sender and
receiver. KIT detects functional interference by executing the re-
ceiver program twice — once with (①→②→③) and once without
(➊→➋→➌) the execution of the sender program — and compares
the receiver’s system call results across both executions to detect
divergence (Figure 1).

Crucially, KIT has to address two major challenges to be efficient
and practical. First, KIT needs to generate test cases that are likely
to trigger functional interference bugs. Considering the large and
complex kernel interface, and therefore huge search space in terms
of test case generation, this is critical to find bugs efficiently. Second,
comparing system call results is non-trivial and must be done with-
out generating false positives that could hinder the frameworks’
real-world usability. This requires effectively addressing legitimate
communication, which allows some functional interference to pro-
vide special functionalities [50]. Furthermore, it requires addressing
apparent interference results, for instance, due to non-determinism,
where system call results diverge for extraneous reasons.

KIT addresses the test space size challenge by leveraging the ob-
servation that existing functional interference bugs involve a data
flow from one container to another over shared kernel variables.
Thus, KIT generates effective test case candidates by first analyzing
the possible OS-level virtualization-related data flows between two
test programs. Specifically, KIT first analyzes the kernel memory
accesses of each test program and then generates test cases, com-
posed of two matching test programs that access the same kernel
shared variable during profiling. To further increase scalability, KIT
clusters test cases that share similar execution behavior and chooses
representative test cases from each cluster.

KIT detects functional interference using a partial kernel speci-
fication and a deterministic analysis on the system call results. In
particular, KIT relies on a partial specification that is incrementally
refined by users to simplify result diagnosis. The KIT workflow
also uses this specification to further improve test generation. Fur-
thermore, when the system call output divergence is detected, KIT
re-runs the receiver programs to identify and analyze the deter-
ministic outcome. To avoid redundant test reports and simplify
bug diagnosis, KIT automatically identifies the sender and receiver
system call pair that is responsible for the functional interference,
then aggregates test reports based on the culprit system call pair.

1Kernel isolation tester

Test case execution A

Kernel

Test case execution B

Receiver container

Execute()

Kernel

Sender
test program

Receiver
test program

Receiver
syscall trace

Receiver
syscall trace

Functional
interference bug

detection

Sender container

Execute()

Receiver container

Execute()

Figure 1: Overview of functional interference testing.

We evaluated KIT by testing the namespace subsystem of the
stable Linux kernel 5.13. In total, we found 9 functional interference
bugs, of which 7 bugs pose risks of container information leaks and
denial of service. Of the bugs we reported, 3 bugs have already been
fixed with 2 patches integrated upstream. Our results show that
KIT is effective at discovering general functional interference bugs,
which are particularly evasive and not the target of existing testing
frameworks. Additionally, when using KIT to detect 7 documented
severe semantic functional interference bugs in old Linux kernels,
KIT detects 5 of them, showing its effectiveness in detecting hard-
to-find, exploitable functional interference bugs.

This paper makes the following contributions:
• A general and principled dynamic testing technique to dis-
cover functional interference bugs in OS-level virtualization,
which (1) leverages profiling-based kernel data flow analysis
to generate test cases that encourage inter-container kernel
data flow and (2) detects functional interference bugs through
a novel test case execution and system call trace analysis ap-
proach.
• An approach to prevent false positives by filtering (1) irrelevant

system call results based on an input specification and (2) non-
deterministic system call results through test re-execution.
• A clustering technique to avoid redundant test reports by
aggregating them based on the culprit sender and receiver
system call pairs involved.
• The implementation of KIT, a practical dynamic testing frame-
work for the Linux namespace subsystem available at https:
//github.com/rssys/kit.
• An evaluation of KIT, which found 9 functional interference

bugs in the Linux namespace subsystem, of which 3 have been
fixed upstream.

2 BACKGROUND AND MOTIVATION

Containers are widely used in data centers for portable and scalable
application deployment. Containers are particularly appealing to
developers because they provide efficient isolation, allowing safe

428

https://github.com/rssys/kit
https://github.com/rssys/kit

KIT: Testing OS-Level Virtualization for Functional Interference Bugs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

resource sharing across applications, high resource utilization, and
fast performance. Under the hood, containers require a runtime,
such as Docker [60] and LXC [59], and an OS-level virtualization
mechanism. While the runtime is responsible for implementing a
consistent and convenient execution environment across machines,
the OS-level virtualization mechanism is responsible for isolating
containers. In Linux, container isolation is implemented using kernel
namespaces [46].

2.1 Linux Namespaces

Linux namespaces isolate kernel resources per container, such as
files and process IDs, allowing containers to have an independent
view of the kernel resources. Linux namespaces are designed to be
flexible, so they provide applications with some control over which
resources are isolated. In particular, there are eight namespaces
types, as shown in Table 1, each of which only protects a specific
kernel resource type. This allows different container runtimes to
choose a specific combination of resources to isolate, according to
their requirements.

To isolate a kernel resource type, a process creates and joins a
namespace instance with the unshare system call, where the process
can specify namespace types with flags (e.g., use CLONE_NEWNET to
specify net namespace). A namespace instance can be assigned to a
process or a group of processes. The kernel then ensures that pro-
cesses in the same namespace group share the same resource view,
while external processes cannot access it. For each namespace type,
the process is always associated with one namespace instance and
can (restrictively) switch between different namespace instances
via the setns system call. On creation, the new process can join
namespace instances of different namespace types if the parent
specifies the corresponding namespace flags in the clone system
call or by inheriting the namespace(s) from the parent.
Namespace bugs. Linux provides many system calls for processes
to interact with a wide range of kernel resources, which makes
kernel resource isolation particularly challenging to implement.
Because resource isolation is a cross-cutting kernel function, many
kernel services need to be correctly implemented to ensure effective
kernel resource isolation. Hence, to protect such a large interface,
developers need to consider every system call that directly or in-
directly accesses protected kernel resources. This makes kernel
development challenging and error-prone, especially implement-
ing system calls with complex semantics, such as those that use
different kernel resource types. For instance, the PID namespace is
heavily used to create an isolated process ID space for processes
within the PID namespace instance. However, a bug [62] found in
Linux v4.17 enabled a process running in one PID namespace in-
stance to access (using an IPC statistic system call) PIDs of processes
in another PID namespace instance. The root cause of this bug was
that developers neglected the need to add PID namespace isolation
to the system call of a seemingly unrelated kernel subsystem, the
IPC stack.

2.2 Testing Kernel Resource Isolation

Although several OS testing approaches have been proposed, cur-
rent approaches do not target general functional interference bugs.

Test case execution A

Kernel

Test case execution B

Receiver container

Execute()

Kernel

r0 = socket(...) r0 = open(...)
pread(r0, ...)

pread(3, ...) = 88

pread(3, ...) = 63

Functional
interference

bug

Sender container

Execute()

Receiver container

Execute()

Figure 2: How KIT found bug #1.

In particular, traditional testing approaches that aim to detect mem-
ory errors or obvious failures are not effective and efficient at find-
ing functional interference bugs [14, 15, 17, 19, 21].

One prior work [34] aims at finding OS-level virtualization bugs
that lead to information leakage. It detects information leakage
by comparing the same file in procfs and sysfs from the host and
container. However, it cannot discover information leakage bugs
in other kernel interfaces, and only focuses on a tiny subset of the
resources protected by namespaces in Linux. Moreover, it does not
explore different kernel states. This prevents discovering informa-
tion leakage bugs that are only triggered in rare kernel states.

Recent work proposes a static analysis approach [83] to discover
kernel abstract resources that are vulnerable to container-based
denial-of-service attacks. However, static analysis struggles to be
sound in large and complex systems, especially when the target sys-
tem extensively uses pointers, which is the kernel case. Furthermore,
this approach is specifically designed to find resource-exhaustion
bugs, and it is unclear how to extend it to discover other and more
serious types of bugs, such as information leakage bugs. Compared
with prior work, KIT proposes a general approach to find general
OS-level virtualization bugs of different types.
Case study: ptype information leak. Figure 2 shows a bug found
by KIT in the net namespace. In Linux, the packet_type data struc-
ture is used to forward packets received by certain network devices
to upper networking layers. A packet_type is registered by several
network protocols and by the packet socket, which intercepts raw
packets from network devices and is often used to implement user-
space network stacks. The kernel maintains the registered packet_

type data structures of all net namespace instances in global lists.
The contents of packet_type structures can be fetched through the
Linux procfs file /proc/net/ptype. This file, as well as the entire
/proc/net directory, should be isolated by the net namespaces as
stated in the net namespace documentation [47]. However, KIT
discovered that, when the sender container creates a packet socket
(①), the read system call trace of /proc/net/ptype (②) in receiver
container is different (③ ➌) from the read system call trace (➋)

429

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Congyu Liu, Sishuai Gong, and Pedro Fonseca

when receiver container is running without the sender program ex-
ecution (➊). We further found that this is because /proc/net/ptype

enables a container to read the dump of the structures packet_type
that are registered by packet sockets in other net namespaces. This
leaks not only the packet_type contents but also its corresponding
packet socket liveness.

This bug cannot be found by prior approaches. Triggering this
bug requires executing certain system calls, such as those used to
create a packet socket, that is not supported by the prior dynamic
testing [34] or resource exhaustion detection [83] approaches.

2.3 Functional Interference Detection

Our goal is to find kernel isolation bugs that allow information
leaks and integrity attacks—the most serious container bugs. Simply
detecting memory errors or obvious kernel failures (e.g., crashes)
may detect some of these bugs, but it would leave out the most
evasive container bugs—i.e., those that occur because of missing or
incorrect logical checks.

Hence, this work explores the idea of using functional interfer-
ence as a detector for container bugs. Instead of looking for internal
errors during kernel execution, this approach aims to detect evi-
dence that the kernel produced the wrong output. Besides detecting
logical errors, this approach has the benefit of simplifying result
analysis; it allows developers to reason about the kernel implemen-
tation and compare it against the specification (i.e., documentation).
However, using functional interference detection as the basis for
an effective kernel testing tool involves several challenges.
Challenges. Systematically discovering functional interference
bugs is challenging for two reasons. First, efficiently triggering
functional interference—i.e., catching the kernel red-handed—is
difficult because it requires two system call sequences, where one
can affect the other when running in two containers. Given the
huge and complex kernel interface, such test cases are particularly
inefficient to generate through brute-force approaches. Compared
with traditional kernel testing approaches (e.g., traditional kernel
fuzzers) where only one system call sequence serves as the test case,
the search space functional interference testing is quadratic. Second,
effectively detecting functional interference bugs is challenging be-
cause of false positives and non-determinism. Linux namespaces
protect many kernel resources, but not all. Thus, functional inter-
ferences detected on unprotected kernel resources are not bugs and
such results should be filtered out to make result analysis practical.

3 PRACTICAL FUNCTIONAL INTERFERENCE

TESTING

This section proposes functional interference testing, a method that
uses functional interference as a strategy for finding container
bugs. It addresses two challenges: efficient test case generation and
effective functional interference bug detection.

3.1 Efficient Test Case Generation

KIT’s test case generation relies on the key observation that the root
cause of functional interference is inter-container communication
over the shared kernel memory. In other words, a container (sender)
can only interfere with another if it modifies a kernel shared mem-
ory region that is used to process a request by a process of another

Table 1: Linux namespace types. Different namespaces pro-

tect different classes of kernel resources.

Namespace type Kernel resource isolated

PID Process ID
Mount Mount point
UTS Hostname
IPC System V IPC; POSIX message queue
Net Network stack
User UID; GID; capabilities
Cgroups Cgroups root directory
Time System time

container (receiver). For example, in the ptype information leakage
bug discussed in §2.2, the culprit inter-container kernel data flow
involves two processes: (1) One process creates a packet socket in its
net namespace, causing the packet_type shared in the kernel to be
updated; (2) another process in another net namespace reads the file
/proc/net/ptype, causing the kernel to read the shared packet_type

list. Thus, effective test cases that trigger functional interference
must trigger some form of inter-container communication.

3.2 Effective Functional Interference Bug

Detection

Functional interference testing detects the functional interference
from a sender program to a receiver program. This is achieved
by analyzing the execution trace of the receiver program when
it executes with and without a preceding execution of the sender
program. In particular, functional interference testing analyzes the
system call traces of the receiver program between two executions.
Intuitively, if the preceding execution of the sender program causes
functional interference on the receiver program, the receiver will
have a different system call trace if it runs without the sender
program.

Detecting bugs that trigger functional interference requires a
strategy to mitigate false positives caused by two factors. First,
functional interference occurs on resources not protected by names-
paces (§2.3). Hence, functional interference testing uses an inter-
active strategy where the user incrementally provides a partial
specification for the framework to filter system calls that access
resources not protected. Furthermore, it uses this information to
inform test case generation. Second, some system call trace di-
vergences across executions are caused by non-determinism. To
address non-determinism and avoid false positives, functional in-
terference testing uses a systematic execution environment that
executes tests from a stable machine state and reruns the receiver
program multiple times to identify and ignore non-deterministic
system call results.

4 KIT DESIGN

KIT uses a pipelined architecture (Figure 3) with four stages to test
kernels for functional interference bugs. First, KIT generates test
cases, which consist of pairs of system call sequences designed to
trigger functional interference bugs across containers. Inspired by
Snowboard [38], KIT implements a profile-based data flow analysis

430

KIT: Testing OS-Level Virtualization for Functional Interference Bugs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

and a clustering strategy to generate and distill effective test cases.
Second, KIT executes the test cases in two containers to exercise
the kernel namespace implementation and traces the system call
results. Third, KIT performs a systematic analysis on the system
call trace results to help developers accurately identify functional
interference bugs. Finally, KIT aggregates test reports caused by the
same or similar functional interference so that users can investigate
unique functional interference cases efficiently.

4.1 Test Case Generation

KIT takes a set of kernel test programs—sequences of system calls—
as input, which can be generated by external tools such as fuzzers.
Then KIT generates test cases to trigger functional interference.
Each test case conceptually consists of a sender and a receiver pro-
gram, which execute in different containers. Intuitively, the sender
aims to modify kernel resources that are supposed to be isolated and
the receiver aims to detect modifications to those kernel resources.

Finding the right pair of sender and receiver programs that mod-
ify and fetch the same namespace-protected kernel resources is
crucial for triggering functional interference bugs. However, this
is challenging due to the complex kernel interface and quadratic
test space (i.e., a pair of programs as opposed to a single program).
KIT uses two techniques to improve search effectiveness and effi-
ciency. First, KIT finds test program pairs that are likely to have
kernel inter-container data flows, which are necessary for func-
tional interference to happen. It uses a dynamic data flow analysis
that profiles the memory accesses trigger by each test program and
then finds pairs of programs that trigger write and read accesses to
the same memory location. Second, KIT prioritizes test cases that
trigger unique kernel behaviors as testing similar behaviors is less
rewarding than testing unique ones. KIT uses several heuristics to
cluster test cases that may trigger the same kernel behavior, and
only executes one test case from each cluster to improve efficiency.

4.1.1 Find Inter-container Communication. To find inter-container
data flows that can be triggered by each pair of sender and receiver
programs, KIT profiles and analyzes the kernel memory accesses
triggered by each test program. If it finds that two test programs
separately trigger a write and read memory access to a shared
memory region, then it deems that the two programs may have an
inter-container data flow.

The kernel behavior, such as the memory access pattern trig-
gered by a test program, largely depends on its execution environ-
ment including the container configuration and initial kernel state.
Therefore, profiling programs in different and arbitrary execution
environments would make it challenging to accurately analyze the
test programs. Instead, inspired by other works [30, 38], KIT always
uses the same execution environment when profiling each test pro-
gram. Specifically, it boots the target kernel in a VM and creates
two user-level processes. KIT configures the two processes to run
in two different namespaces (i.e., containers) and then creates a
virtual machine snapshot. This snapshot is always reloaded before
KIT profiles a test program.

During the test program execution, KIT relies on kernel instru-
mentation to collect information about the kernel memory accesses,
such as the memory addresses accessed, whether it is a write or
read, the address of the instruction that causes the memory access,

and the current call stack. To avoid collecting memory accesses
that are irrelevant to the test program (e.g., made by background
threads), KIT identifies the kernel thread handling system calls
made by the test program and only traces memory accesses made
by this kernel thread.

Once KIT profiles the execution of every test program, it ana-
lyzes the memory accesses to generate functional interference test
cases. A pair of test programs that has potential inter-container data
flows is promising, but it will only trigger functional interference if
the data flow happens over a namespace-protected resource. Thus,
KIT only generates a functional interference test case when the
read memory access involved in the data flow is caused by a system
call that accesses namespace-protected resources (§4.3.1). This is
because if the reader is not a system call that accesses namespace-
protected resources, then the reader system call cannot be used to
detect namespace functional interference bugs. KIT ignores ker-
nel data flows that do not involve namespace-protected resources
because exercising them would not be effective at functional inter-
ference testing.

4.1.2 Cluster Test Cases. Next, KIT clusters test cases that may
trigger similar namespace behavior (e.g., the same functional in-
terference bug) to reduce the testing workload and improve the
efficiency of finding functional interference bugs. The main idea
is to cluster similar test cases based on the properties of potential
inter-container kernel data flows triggered by test cases. If two test
cases can cause similar inter-container kernel data flows, they are
likely to trigger the same functional interference bug. KIT provides
two heuristics as data flow similarity criteria for users to choose:
DF-IA and DF-ST.

DF-IA defines data flow that involves the same write and read
kernel instructions as similar. DF-ST extends DF-IA in that it also
considers the call stacks in which the write and read instructions
are executed. In particular, DF-ST only considers two data flows
similar if they (1) involve the same write and read instructions
and (2) execute the instructions involved under the same call stack
context, which is defined as the sequence of function IDs (§5) in
the call stack. To avoid cluster explosion, the call stack depth can
be limited with a configurable constant.

4.2 Test Case Execution

KIT executes the generated test cases to exercise the potential inter-
container data flow and find functional interference. KIT iterates
over all test case clusters (§4.1.2) and only chooses one test case to
execute from each cluster. KIT uses the VM snapshot to run each
test program in a different container so that it can exercise the
inter-container data flows and trace the system call results.

KIT executes a test case twice. As shown in Figure 1, in one
execution, it first executes the sender program in the sender con-
tainer, and then executes the receiver program, during which it
collects the system call trace of the receiver. In another execution,
KIT skips the sender program execution and only executes the
receiver program, in which another system call trace is collected.
The system call trace contains the execution results of the system
calls, including arguments, return value, and error number. The
two receiver system call traces are then used to detect functional
interference (§4.3).

431

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Congyu Liu, Sishuai Gong, and Pedro Fonseca

Container
program

Container
program

Test Case
Execution

§4.2

Test Case
Generation

§4.1

sysca
ll

sysca Test Report
Aggregation

§4.4

Functional
interference bug

Test case
Attacker
program

Victi
m

progr
am

Test case
Attacker
program

Victim
progr

am

Test case

Sender
program

Receiver
program

Function Interference
Bug Detection

§4.3

ASPLOS camera-ready version - fixed

Test
program

Syscall
trace

Functional
interference bug

Figure 3: Design overview of KIT.

Algorithm 1 Compare two system call trace abstract syntax trees.
Input:𝑇𝑎 ,𝑇𝑏 : Two system call trace abstract syntax tree nodes.
Output: 𝐷 : List of different tree nodes.
1: function SyscallTraceCmp(𝑇𝑎 ,𝑇𝑏)
2: if 𝑇𝑎 .𝑑𝑒𝑡 and𝑇𝑏 .𝑑𝑒𝑡 then

3: 𝑙𝑎, 𝑙𝑏 ← Len(𝑇𝑎 .𝑐ℎ), Len(𝑇𝑏 .𝑐ℎ)
4: if 𝑇𝑎 .𝑣𝑎𝑙 ≠ 𝑇𝑏 .𝑣𝑎𝑙 or 𝑙𝑎 ≠ 𝑙𝑏 then

5: 𝐷 ← 𝐷 ∪ (𝑇𝑎 ,𝑇𝑏)
6: else

7: for 𝑖 ← 0 to 𝑙𝑎 − 1 do
8: 𝐷 ← 𝐷∪ SyscallTraceCmp(𝑇𝑎 .𝑐ℎ [𝑖],𝑇𝑏 .𝑐ℎ [𝑖])
9: return 𝐷

4.3 Functional Interference Bug Detection

KIT compares the system call traces of receiver program when it
runs with and without the preceding execution of the sender pro-
gram. To reduce false positive functional interference,KIT identifies
and excludes the system calls results that are non-deterministic or
unrelated to namespace-protected resources.

4.3.1 Identify System Call Accessing Protected Resources. KIT ana-
lyzes the test program to identify system calls that access namespace
protected resources. The identification algorithm relies on a partial
input specification, which is provided by the KIT user.

The specification supports two encoding formats. First, users
can write callback checker functions to select system calls by com-
paring call signatures (e.g., call name). Second, users can specify
file descriptor types to select system calls that either use or return
them. It is efficient to select system calls that access namespace-
protected resources that require specific file descriptors as the sys-
tem call parameter. For instance, when accessing system V message
queues [49], the queue ID is generally a system call parameter (e.g.,
msgget(id,flag)). Thus, to test system V message queue, one can
provide the queue ID file descriptor as a rule to KIT, which will then
select all system calls that either use or return the queue ID. In this
way, manually collecting all corresponding system calls that access
certain kernel resources and writing callback checker functions to
select each of them is no longer necessary.

4.3.2 Identify Non-deterministic Results. Some system calls can
produce non-deterministic results, which vary across runs. KIT
needs to identify such results in the receiver program so that
it does wrongly flag such cases as functional interference. Even
worse, some system calls have part of their results that are non-
deterministic and parts that are deterministic. For instance, the
fstat system call produces not only the non-deterministic results,
such as timestamps, but also deterministic results, such as the file
size. Naively ignoring all results produced by such system calls
would prevent KIT from finding important classes of functional

interference bugs. Thus, KIT needs a fine-grained trace comparison
algorithm that can ignore non-deterministic results during com-
parison and an automatic approach to identify non-deterministic
system call results.

KIT employs a fine-grained system call trace comparison al-
gorithm (Algorithm 1), which compares the abstract syntax trees
(AST) of two system call traces and reports the tree differences.
Comparing AST differences instead of comparing plain system call
trace text enables identifying or ignoring fine-grained system call
result differences. A similar approach has also been applied to detect
fine-grained source code changes between different versions [28].
To compare two traces, the algorithm recursively traverses two
ASTs (lines 6–8), and reports differences when two tree nodes do
not match (lines 4–5). Specifically, each node has a det flag, which
specifies if the system call results represented by the current node
and its sub-tree are deterministic. This flag is set to true by default.
During the comparison, if one of the two tree nodes contains a det

flag set to false, the difference between the two nodes is ignored
and their sub-tree traversal halts (line 2).

Many non-deterministic system call results are caused by timing.
For instance, the output of certain system calls (e.g., timestamp
in the fstat system call) depends on the system call invocation
time and varies across runs. To systematically identify such cases,
KIT re-runs the receiver program multiple times with different
starting times, so that system call results that are sensitive to timing
vary between different executions. KIT then compares all system
call trace ASTs, and sets the det flag to false for the nodes that
vary between different executions. KIT saves this non-determinism
information to disk for each test program to reduce the need to
rerun the test program in future testing campaigns.

4.4 Test Report Aggregation

An important task for KIT is to aggregate test reports caused by the
same type of functional interference such that only the unique ones
are examined by users. KIT’s core insight to identify similar test re-
ports is that a specific functional interference case can usually only
be triggered and detected by a specific sender and receiver system
call. Thus, given a set of test reports, KIT first identifies the pair
of system calls responsible for the functional interference in each
test report and then aggregates test reports based on the system
call pair identified, as they are likely due to the same functional
interference.

To find the root-cause sender system calls, KIT uses a differential
testing approach — for every system call in the sender program,
KIT checks whether skipping this sender call during execution will
mask the functional interference. Intuitively, a sender system call is
responsible for functional interference if the functional interference
does not manifest anymore without this sender call.

432

KIT: Testing OS-Level Virtualization for Functional Interference Bugs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Algorithm 2 Identify system call pairs that trigger functional in-
terference in a given test report.
Input: 𝑃𝑆 : Sender program; 𝑃𝑅 : Receiver program; 𝐼𝑅: Indices of the
system calls in 𝑃𝑅 that are interfered by 𝑃𝑆 .
Output: 𝑆 : System call pair list.
1: function Diagnose(𝑃𝑆 , 𝑃𝑅, 𝐼𝑅)
2: 𝑆 ← 𝜙

3: for 𝑖 ← CallLen(𝑃𝑆) −1 to 0 do
4: 𝑃𝑆 ← RemoveCall(𝑃𝑆 , 𝑖)
5: 𝐼𝑅′ ← TestFuncI(𝑃𝑆 , 𝑃𝑅)
6: Δ𝐼𝑅 ← 𝐼𝑅 − 𝐼𝑅′
7: if Δ𝐼𝑅 is 𝜙 then continue

8: 𝑆 ← 𝑆 ∪ (𝑖, Min(Δ𝐼𝑅))
9: 𝐼𝑅 ← 𝐼𝑅 − Δ𝐼𝑅
10: if 𝐼𝑅 is 𝜙 then break

11: return 𝑆

Once the sender system call is found, KIT continues to find
the interfered receiver system calls that produce different results
with and without the sender call. Because of the control and data
dependency in the receiver program, multiple interfered calls can
be found often. For instance, a sender system call might cause a
receiver system call to fail to create a file descriptor, which will
further affect the file descriptor value of the following receiver
system calls. In this case, KIT only considers the first interfered
receiver system call because the functional interference can already
be detected by running it after the sender program.

KIT implements Algorithm 2 to identify the system call pairs
that trigger functional interference in a given report, which works
as follows. It takes three arguments as input: a sender test program
(𝑃𝑆), a receiver test program (𝑃𝑅), and the indices of 𝑃𝑅 system
calls interfered by 𝑃𝑆 during functional interference testing (𝐼𝑅).
It returns a list 𝑆 containing pairs of sender and receiver system
calls where the sender call is responsible for functional interference
on the receiver system call. The algorithm removes each sender
system call in inverse order (lines 3–4), runs the new test case, and
identifies the receiver system calls that are interfered (𝐼𝑅′) in the
new test case (line 5). As explained above, by comparing 𝐼𝑅 and 𝐼𝑅′,
the algorithm finds the receiver system calls (Δ𝐼𝑅) interfered by the
removed sender system call 𝑖 (lines 6–8). As illustrated previously,
the algorithm will only add the sender system call 𝑖 and the first
receiver system call in Δ𝐼𝑅 to 𝑆 . The algorithm will then remove
the receiver system call indices in Δ𝐼𝑅 from 𝐼𝑅 (line 9) since it has
found the sender system call that interferes with the calls in Δ𝐼𝑅.
If the algorithm has found the culprit sender system call for all
interfered receiver system calls in 𝐼𝑅 (line 10), then it returns 𝑆 (line
11).

KIT aggregates test reports based on the identified system call
pairs that trigger and detect the functional interference. KIT first
aggregates test reports by grouping them by the interfered receiver
system call (AGG-R). In each AGG-R group, KIT further aggregates
test reports by grouping them on the culprit sender system call
(AGG-RS) that interferes with this receiver system call. The system
call is represented using its name and the file descriptors used by
the system call.

5 IMPLEMENTATION

The implementation of KIT is divided into memory tracing and test-
ing components. KIT memory tracing component is implemented
with about 200 lines of code in the kernel and 50 lines of code in
the compiler. KIT testing component is implemented with about
7400 lines of Go, C/C++, and shell code, excluding the dependent
third-party code.

5.1 Test Case Generation

Kernel memory access tracing. KIT profiles kernel memory ac-
cess using compiler instrumentation. The compiler instrumentation
is implemented based on GCC 9.3 and KASAN’s GIMPLE [33] pass.
Due to GIMPLE’s limitations, memory accesses made by inline as-
sembly kernel code are not instrumented automatically. Instead,
KIT relies on existing annotations to instrument such kernel code.
In particular, KIT leverages the hook functions used by KASAN and
KCSAN. In addition, KIT implements a system call for user-space
programs to control profiling and collect the profiling data.

To avoid tracing memory accesses irrelevant to test case execu-
tion, several implementation choices are made. First, some kernel
subsystems are not instrumented since they are less relevant to
OS-level virtualization implementation (e.g., scheduler, memory
management, tracing hooks, and debugging modules). Second, dur-
ing run-time, most memory accesses made during interrupt context
(e.g., nmi, hardirq, and softirq) are ignored with the help of the ker-
nel’s in_task() check function, since they do not usually result from
the test program’s system call and often lead to non-deterministic
traces. Lastly, memory accesses to the kernel stack are ignored since
the stack is not shared by containers.

KIT also instruments before and after each kernel function call-
site. During runtime, the instrumentation produces an execution
trace in chronological order. The trace contains entries of three
types: function entry, function exit, and memory access, so that KIT
can analyze the current call stack for every memory access entry.
The function enter-entry also contains a unique function ID, which
is assigned to each kernel function during compiler instrumentation.
To recover the call stack for each memory access, when processing
the traces, KIT maintains a simulated call stack. KIT pushes the
function ID into the simulated call stack when it sees the function
call enter-entry and pops the simulated call stack when it sees the
function call exit-entry. In this way, the call stack of each kernel
memory access trace can be obtained by referring to the simulated
call stack. Note that this approach assumes that kernel function
calls eventually return. Thus, KIT does not instrument functions
that do not return exactly once (e.g., functions with GCC noreturn

attribute).
Test cases generation and clustering. Similar to Snowboard,
KIT uses a multi-dimensional map to process the kernel memory
accesses made by test programs. The keys of the map include width,
read/write flag, memory address, instruction address, and call stack
hash. The value of the map is a list of test programs. To generate
the map, KIT processes the kernel memory access trace sequence
for each test program and updates the map accordingly. For each
kernel memory access trace, the call stack hash is generated with
the SHA-1 value of the function ID sequence of the simulated call
stack. To generate and cluster test cases, KIT iterates over kernel

433

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Congyu Liu, Sishuai Gong, and Pedro Fonseca

memory regions in the map, finds the overlapped kernel memory
regions, pairs the test programs to generate test cases, and clusters
them based on the specified keys.

5.2 Test Case Execution

Virtual machine. KIT uses QEMU-KVM for test program profiling
and test case execution. A test manager on the host interacts with
QEMU using the QMP protocol [5] to create and reload a VM
snapshot. To avoid introducing non-determinism into the guest OS
network stack, which might affect test case execution results, the
host test manager communicates with the guest machine through
virtio-serial.
Test case executor. The KIT test case executor is implemented
based on the Syzkaller executor, which interprets the Syzkaller
test program and issues system calls. During the VM snapshot
creation, KIT first spawns two Syzkaller executors, which set up
their containers and block on waiting for test input. After that,
KIT takes the VM snapshot. Before executing each test case, KIT
resumes from the VM snapshot, and then feeds the test case to the
two executors, which then synchronize with each other to execute
the sender and receiver test programs in order (i.e., run the sender
program first, then run the receiver program).
Container setting. KIT sets up containers to avoid reproducing
documented functional interference over protected resources so
that it can focus on finding new ones. Hence, KIT tunes a few
container settings, which are determined by referring to the doc-
umentation or existing container settings. For instance, KIT uses
ulimit to prevent resource contention on message queues (a re-
source protected by IPC namespaces) across namespaces, which
could cause false positive reports.
System call result decoding library. KIT decodes the system
call results to text with a system call decoding library, which we
customize from strace [9]. In particular, we customize the strace’s
internal functions umoven and umovestr, which are used to copy data
from the ptrace tracee address space, by changing them to directly
copy data from the current process’s address space.
Distributed testing. KIT can run distributed tests, so it operates in
either the client or server mode. When running in server mode, KIT
exposes several RPC services to clients to distribute VM snapshots,
transfer test cases, and collect test results.

5.3 Functional Interference Bug Detection

The system call identification is implemented using Syzlang —
Syzkaller’s system call description framework. KIT allows users to
describe a file descriptor using a Syzlang resource identifier, which
uniquely represents the file descriptor type (e.g., UNIX socket has
a resource identifier sock_unix). As Syzlang only assigns unique
resource identifiers to a limited of kernel file descriptors, KIT can
also select system calls based on user-provided seed system calls.
For instance, if the user highlights a seed system call in the program
(e.g., open("/proc/net/*",...)), KIT will automatically select any
system call that has explicit data dependency on the seed system
call.

We create a specification that describes the system calls that
access resources protected by namespaces. The process is relatively

static int ptype_seq_show(...) {
...
else if (pt->dev == NULL ||

dev_net(pt->dev) == seq_file_net(seq)) {
if (pt->type == htons(ETH_P_ALL))
seq_puts(seq, "ALL ");

else
seq_printf(seq, "%04x", ntohs(pt->type));

...
}
...

}

1
2
4
5
6
7
8
9
10
11
12
13

Miss ns check

Figure 4: Code snippet of bug #1.

simple since most of the kernel resources we tested can be spec-
ified by describing the file descriptor type with Syzlang resource
identifiers. The system call signature checker function can be easily
written since most of them simply check the system call name and
require less than 30 lines of code. In total, we wrote 17 system call
checker functions and 57 file descriptor types, in roughly 3 person-
hours. The resources we selected span across the PID, mount, net,
IPC, and user namespaces, and involve the bulk of the namespace
system.

6 EVALUATION

Experimental setup.We ran all evaluation experiments on ma-
chines with an AMD EPYC 7402P CPU, 128 GB of memory, and
Ubuntu 22.04. We generated test cases using a program corpus cre-
ated by Syzkaller, consisting of 98853 test programs, and we applied
KIT to the stable Linux kernel 5.13 release to find new bugs.

6.1 Finding Functional Interference Bugs

In total, KIT found 9 functional interference bugs in Linux 5.13.
To save developers’ time, we reported 7 bugs, which, to our best
knowledge, were not documented. 6 of them were confirmed and 3
were fixed already as of this writing, with 2 patches merged into
the mainline kernel. 4 of the bugs found by KIT cause information
leakage and 3 others cause denial of service. Both of these classes
can affect the security of containers. Given that containers have
been massively deployed and thus namespace code is extensively
exercised and scrutinized [43], we believe this result demonstrates
the effectiveness of KIT.

During our interactions with developers, we found that some
bugs were caused by incomplete support for namespaces instead
of incorrect checks. For instance, the namespace support for the
RDS socket stopped halfway and the consequent incomplete imple-
mentation causes bug #3. Bug #6 shares the same property. In the
discussion on SCTP namespace support patch, the kernel developer
acknowledged that SCTP association ID space “ought to be” per
net namespace, but the bug is not fixed due to the high amount of
implementation effort.
Case Study: Bug #1. As discussed in §2.2, this bug allows a user
to read the dump of the packet_type structure in other net names-
paces via /proc/net/ptype. The sender program, which creates a
packet socket, interferes with the /proc/net/ptype content in the
other container. Our analysis indicates that this bug is due to the
mishandling of the packet_type structure in the kernel function

434

KIT: Testing OS-Level Virtualization for Functional Interference Bugs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 2: Linux namespace functional interference bugs found by KIT.

ID Container S (𝐶𝑆) action Container R (𝐶𝑅) action 𝐶𝑅 syscall trace diff Resource Status

1 Create a packet socket Read /proc/net/ptype Show the ptype from𝐶𝑆 ptype Fixed
2 Create an exclusive flow label Transmit data with an unregistered flow label Transmission fails IPv6 / flow label Fixed
3 Bind an RDS socket Bind an RDS socket Binding fails RDS / address Confirmed
4 Create an exclusive flow label Connect with an unregistered flow label Connection fails IPv6 / flow label Fixed
5 Create a TCP socket Read /proc/net/sockstat Counter in file increases proto / socket Confirmed
6 Generate a socket cookie Generate a socket cookie Cookie changes socket / cookie Known
7 Request an association ID Request an association ID Association ID changes SCTP / assoc_id Known
8 Allocate protocol memory Read /proc/net/sockstat Counter in file increases proto / memory Confirmed
9 Allocate protocol memory Read /proc/net/protocols Counter in file increases proto / memory Confirmed

static inline struct ip6_flowlabel *fl6_sock_lookup(...) {
...
if (static_branch_unlikely(&ipv6_flowlabel_exclusive.key))
return __fl6_sock_lookup(sk, label) ? : ERR_PTR(-ENOENT);

...
}
static struct ip6_flowlabel *fl_create(...) {
...
if (fl_shared_exclusive(fl) || fl->opt)
static_branch_deferred_inc(&ipv6_flowlabel_exclusive);

...
}

1
2
4
5
6
7
8
9
10
11
12
13

Shared by all ns

Figure 5: Code snippet of bug #2.

ptype_seq_show(): this function does not check the packet socket’s
net namespace to determine if the packet_type should be displayed
or hidden (Figure 4). After KIT found this bug, we submitted a patch
to fix this bug, which was merged into the mainline kernel within
a week.

This bug allows attackers to infer information about other con-
tainers’ workloads. Moreover, since an attacker can easily manip-
ulate the content of this file by creating a packet socket, this bug
could be used to construct covert channels [53]. It could also be used
to fingerprint hosts to co-locate attacker containers and orchestrate
power attacks [34].

Surprisingly, we noticed afterward that another patch had been
submitted previously for the same function trying to address a
similar information leakage bug. Although the developers fixed the
case where this file leaks networking device information, another
case where it leaks packet socket information was overlooked. This
shows the difficulty in correctly implementing and fixing resource
isolation: the complex interactions between different networking
layers make it hard to reason about the code even for experienced
kernel developers. KIT systematically explores kernel execution
paths to automatically help developers identify such bugs.
Case Study: Bug #2. The flow label is an essential field in the
IPv6 packet header, which is used to represent packet flows at the
networking layer. In Linux, the IPv6 protocol stack, including the
flow label, is protected by the net namespace [47]. Hence, different
net namespaces can use the same flow labels without collisions.

Linux adopts a two-stage flow label management model. When
no exclusive flow label (e.g., a flow label exclusively owned by a
user) is registered in the kernel, the kernel allows processes to use
any flow labels without explicit registration, skipping expensive

exclusive flow label collision checks for connections and data trans-
missions. Once an exclusive flow label is registered in the kernel, the
kernel will use a more strict yet expensive flow label management
model. A process must register the desired flow label before usage,
otherwise, the data transmission and connection will be rejected.

During testing, KIT found a functional interference bug because
the flow label management model was not originally implemented
with the namespace isolation in mind, i.e., registering an exclusive
flow label should only change the flow label management model
in its namespace instance, not others. However, this bug allows
a sender container to enable the strict and expensive flow label
management for all net namespace instances, by registering one
exclusive flow label. Thus, a sender container can decrease the
performance of other receiver containers that use the IPv6 flow
label, such as QUIC [67], a connectionless networking protocol
that multiplexes flows [23]. More importantly, this bug breaks the
property that each net namespace has its own flow label namespace,
where flow collisions across containers are not possible. Hence,
developers might implement the container application without
handling the strict flow label management model, assuming that
the net namespace will isolate the flow label management models
between different net namespace instances. In this case, an attacker
could cause a denial-of-service in these containers by registering
colliding exclusive flow labels. We reported this bug to the kernel
developers, who submitted a patch in two days.

The root cause of this bug is that the state of the flow label man-
agement model, ipv6_flowlabel_exclusive, is not per net names-
pace (Figure 5). Note that this variable is implemented with a jump
label optimization, where the jump is implemented by code patch-
ing instead of making a normal memory access. This optimization
prevents our profiling-based data flow analysis from predicting the
inter-container data flow over this variable, as it is not instrumented.
However, our random test case generation approach found this bug.
Resetting the CONFIG_JUMP_LABEL when compiling the kernel will
disable this optimization and allows KIT to identify this bug with
the data flow analysis. Furthermore, a more comprehensive data
flow instrumentation could add support for these cases.

6.2 Detecting Known Isolation Bugs

We evaluated the effectiveness of KIT in detecting known Linux
namespace isolation bugs. To collect bugs, we searched through
the Linux git commit log and the CVE vulnerability list [20]. We
chose silent bugs that are caused by logic errors (i.e., bugs that

435

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Congyu Liu, Sishuai Gong, and Pedro Fonseca

Table 3: Known Linux namespace bugs reproduced by functional interference testing.

ID Container S (𝐶𝑆) action Container R (𝐶𝑅) action 𝐶𝑅 syscall trace diff Resource Kernel NS

A [72] Change prio using PRIO_USER Read prio of the current process Value changes prio 4.4 pid
B [11] Create network devices Listen on kobject uevent Receive queue uevents netdev/queue 3.14 net
C [79] Setup IPVS Read /proc/net/ip_vs Read IPVS information from𝐶𝑆 IPVS 4.15 net
D [19] Set nf_conntrack_max Read nf_conntrack_max Value changes nf_conntrack 5.13 net
E [18] (Host) Create files in /tmp Read unmounted /tmp via io_uring Observe newly created files mount 5.6 mnt

Table 4: Evaluation of different test case generation and clus-

tering strategies. KIT skips redundant test cases across clus-

ters.

Gen Test cases (M) Effectiveness

DF-IA 1.13 9/9
DF-ST-1 3.32 9/9
DF-ST-2 6.61 9/9
RAND 8.66 5/9
DF 234.63

do not crash or hang the kernel), which are the hardest-to-find by
users and the main focus of KIT. In fact, all these bugs were found
manually instead of by an automated testing tool. All bugs analyzed
are recent bugs with reports that include the reproduction steps, so
that we can write the test case in C.

In total, we collected 7 known bugs, and KIT was able to repro-
duce 5 of them (Table 3), showing its effectiveness in detecting
severe functional interference bugs. The reproduced bugs were
found in different namespaces, including the net, mount, and PID
namespaces. Moreover, some of them have been shown to intro-
duce security vulnerabilities. For instance, bug D allows directly
changing the global nf_conntrack sysctl parameter from any net
namespace created by privileged users, which can cause a denial of
service; while bug E allows a user in a mount namespace to escape
to the host mount points. Both bugs D and E have assigned security
advisory reports (CVEs).

Additionally, we found that 2 known Linux namespace isolation
bugs can not be detected by functional interference testing. For
instance, one bug [85] causes functional interference over a kernel
resource that has non-deterministic system call results evenwithout
any functional interference, so this bug is ignored by KIT. Another
bug [81] requires the receiver test program to know the exact re-
source ID created by the sender program during runtime, which
is not supported by our functional interference testing approach.
Although it would be desirable to support such bugs, exploiting
them is typically more difficult because attackers cannot determin-
istically retrieve information from the receiver in one shot, so they
are typically less serious.

6.3 Test Case Generation

We further analyzed the effectiveness of different test case genera-
tion approaches. We define effectiveness as the ability to discover
new functional interference bugs. To see how the inter-container
data flow analysis improves test case generation, we implement a

Table 5: Test report filtering effectiveness. “After non-det +

resource filtering” represents the final number of filtered

reports before aggregation.

Number Percentage

Tests executed 1,132,761
Initial reports 15,353 100%
After non-det filtering 891 5.80%
After non-det + resource filtering 808 5.26%

Table 6: Test report aggregation results. Results include false

positives (FP) and cases still under investigation (UI).

Bug ID FP UI Total

1 2 3 4 5 6 7 8 9

Filtered reports 12 22 7 4 3 2 679 2 5 61 11 808
AGG-RS groups 7 12 1 3 1 2 13 1 2 19 10 71
AGG-R groups 5 7 1 2 1 2 2 1 1 4 6 32

random test case generation (RAND) as a baseline approach for com-
parison. This approach randomly chooses the sender and receiver
program from the input corpus to build one test case. Furthermore,
we compared two test case clustering strategies that are applied
upon inter-container data flows to improve test case effectiveness,
namely the instruction address strategy (DF-IA), and the call stack
strategy (DF-ST). We evaluated DF-ST with the call stack depth
set to one (DF-ST-1) and two (DF-ST-2). When evaluating each
clustering strategy, we executed enough test cases so that every
cluster was exercised, i.e., at least one of its test cases was executed.

As shown in Table 4, DF-IA, DF-ST-1, and DF-ST-2 are equally
effective, as they can detect all new functional interference bugs
after exercising all clusters. Furthermore, they significantly distill
the number of test cases generated based on data flow analysis (DF).
However, RAND is much less effective as it only discovers bugs #1,
#2, #5, #7, and #9. This shows the effectiveness of KIT data flow
based test case generation.

6.4 Distilling Test Reports

To understand how KIT helps users efficiently diagnose bug reports,
we evaluated how KIT filters out false positive reports and then
aggregates reports by the same functional interference. The bug
reports used in this section were gathered from the DF-IA test case
generation strategy, which is representative of the other strategies
as well.
Filter test reports. Table 5 shows how KIT filtered the false posi-
tive test reports with non-deterministic result identification (§4.3.2)

436

KIT: Testing OS-Level Virtualization for Functional Interference Bugs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

and by identifying system calls that access protected resources
(§4.3.1). Recall that KIT first filters non-deterministic candidate
reports where the functional interference is not reproducible, and
then it filters reports where the functional interference happens
over resources not protected by namespaces.

In total, the two filtering methods removed 14,545 false positive
reports from 15,353 test report candidates, showing KIT can signifi-
cantly reduce the manual efforts for investigation by identifying
false positive reports automatically. The non-deterministic filter
was more effective than the protected resource filter. We believe
that this is due to KIT’s test case generation algorithm (§4.1.2). It en-
sures that the receiver program always contains at least one system
call that accesses resources protected by namespaces. Thus, fewer
system calls that do not access protected resources are exercised,
which leads to fewer false positives.
Aggregate test reports. Recall that KIT uses two report aggre-
gation strategies to simplify analysis: AGG-R, which aggregates
reports with the same receiver system call, and AGG-RS, which
aggregates reports with the same sender and receiver system call
pair. Table 6 includes the number of AGG-R and AGG-RS groups
that contain the test cases triggering the functional interference for
each bug found. We also counted the number AGG-R and AGG-R
groups that contain false positives (FP) reports or reports under
investigation (UI). As shown in Table 6, the total number of AGG-R
and AGG-RS groups is much smaller than the total number of test
reports, and most bugs only involved a couple of clusters, which
significantly simplifies the analysis.

Test report aggregation greatly reduced the analysis time of re-
dundant test reports. In total, we spent around 30 person-hours
on diagnosing the reports. In particular, we spent approximately
20 person-hours on diagnosing test reports of functional interfer-
ence bugs in Table 2 and 10 person-hours on the remaining test
reports. Diagnosing a test report is inevitably time-consuming, as
it involves correctly understanding the namespace implementation,
diagnosing the root causes, analyzing past kernel mailing and com-
mit history, and writing patches. As an AGG-RS group aggregates
test reports that trigger the same functional interference, we only
need to examine one test report from an AGG-RS group. For in-
stance, KIT generated 684 test reports that triggered bug #7 but it
was able to aggregate similar reports together and only output 13
AGG-RS groups, therefore we only need to analyze 13 test reports.
False positives. We identified 4 AGG-R and 19 AGG-RS groups as
false positives (61 test reports).We observed that all these caseswere
caused by incomplete test report filtering, where tested resources
are not protected by namespaces. For instance, 11 AGG-RS (46 test
reports) groups involve functional interference in the minor device
number of procfs, ramfs, and others, which is returned by the stat

and fstat system calls. These are false positives because the minor
device number is not protected by namespaces.

Handling false positive test reports with report aggregation is
relatively easy. Once the user confirms one false positive test report,
the entire AGG-RS group it belongs to can be dropped to avoid other
similar false positive reports. Users can even drop the entire AGG-R
group to exclude all test reports where the functional interference
happens on the same receiver system call. For instance, we dropped
an AGG-R group containing 14 test reports, where the interfered

receiver system call reads /proc/crypto, which is not protected by
namespaces.

6.5 Performance

Test case generation. KIT executes each test program four times
to get the system call trace and kernel execution trace when run-
ning it in the sender and receiver containers. KIT executes each
test program twice in both the sender and receiver container. In
one execution KIT collects the system call trace and in another
execution it collects the execution trace, which includes informa-
tion about call stacks and kernel memory accesses of the kernel
thread. Two trace collections have to run separately as collecting
execution traces using instrumentation may affect the system call
trace. For instance, executing the instrumentation code slows down
the performance and may cause a timeout error for some system
calls.

KIT takes less than 9 hours to profile the entire corpus on a single
server. This is significantly faster than other approaches to profile
memory accesses. For instance, Snowboard takes 80 hours to profile
129,876 test programs with 10 machines running in parallel [38].
Two factors contribute to the higher profiling performance: (1) KIT
leverages compiler instrumentation to collect memory access traces
and efficiently profiles test program by taking advantage of hard-
ware virtualization (e.g., running with KVM enabled) instead of
collecting memory accesses through software emulation; (2) Instead
of profiling every kernel memory access, KIT avoids instrumenting
the kernel memory accesses that are irrelevant to namespace iso-
lation. KIT analyzes memory traces and generates test cases in a
single machine within 30 minutes.
Test case execution. By spawning 110 VMs in total, across 4
servers, this test setting allows KIT to achieve 31.3 test case exe-
cutions per second. In total, KIT executes 1.13M test cases within
10 hours. The performance of KIT could further benefit from exist-
ing fast snapshot mechanisms, such as on-demand-fork [87] and
others [68, 70].

7 DISCUSSION

Initial test programs. KIT relies on external kernel testing tools
(e.g., Syzkaller) to generate the initial kernel test programs. Un-
doubtedly, the quality of these test programs is crucial for finding
functional interference bugs. For instance, if triggering a certain
functional interference bug requires a data flow over a kernel shared
variable, but all initial test programs either do not write to or write
the original value (i.e., a write that does not change the state) to this
kernel shared variable, then KIT cannot detect this functional inter-
ference bug. Hence, we expect that KIT’s effectiveness will improve
with future advances in the thriving field of feedback fuzzers.
Applications to other isolation mechanisms. Although we
focus on container bugs due to their popularity and security impact,
KIT could be applied to test other isolation mechanisms, such as
hypervisor and TEE-based approaches [1, 8, 31, 42, 71, 88]. By
design, KIT is able to detect functional interference bugs for the
majority types of Linux namespace functional interference bugs,
even though all bugs found by KIT are in the network namespace,

437

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Congyu Liu, Sishuai Gong, and Pedro Fonseca

possibly due to the complexity of this particular subsystem and the
focus of Syzkaller test program generation.
Bug detection. Functional interference testing ignores non-deter-
ministic resources during trace divergence analysis. One drawback
of this design is that KIT cannot efficiently test the time namespace
since the protected resources (e.g., systems clocks) are non-deter-
ministic. A possible solution is to learn the valid bounds of resource
values, caused by non-determinism, through dynamic profiling
and detecting inter-container resource interference by identifying
bound violations. A similar approach has been formalized in prior
work [10], which detects timing side channels. Plus, the current
implementation does not support detecting bugs that only expose
under complex kernel thread interleavings. However, our study on
known functional interference bugs indicates that most bugs can
be exposed or even exploited without concurrency. In addition, KIT
can be combinedwith concurrency testing tools [2, 29, 30, 38, 44, 82]
to detect concurrency functional interference bugs. We leave this
as future work.
False positives. KIT filters system calls that do not access pro-
tected resources to reduce false positives. Nevertheless, given the
complex system call interface, some system calls that access pro-
tected resources may contain states of the resources that are not
protected, which could result in false positives. With the test report
aggregation (§4.4), KIT reduces the users’ effort spent on analyz-
ing redundant false positive functional interference bug reports.
Furthermore, we believe a more detailed document of kernel re-
source isolation could better assist users to identify and diagnose
these cases. Additionally, KIT can reduce the non-deterministic
test reports with the help of prior works in deterministic execu-
tion [22, 57, 64].

8 RELATEDWORK

OS-level virtualization testing. Dynamic testing approaches [7,
30, 31, 36, 38, 39, 41, 45, 51, 66, 69, 76] have been proposed to dis-
cover general crashes, memory bugs, concurrency bugs, and hy-
pervisor bugs in kernels. However, few works target functional
interference bugs in OS-level virtualization implementation. Kernel
regression testing [3, 24, 52] relies on test cases written by kernel
developers to test OS-level virtualization, but these test cases mainly
focus on exercising well-known patterns of functional interference
bugs rather than finding new ones. There are a few prior works
that look at testing OS-level virtualization. For instance, a recent
work [83] proposes a static analysis framework to discover resource
exhaustion bugs in OS-level virtualization. Another work [34] aims
at discovering information leakage in Linux containers. Pex [86]
uses static analysis to identify permission check errors in the Linux
user namespace. Nevertheless, none of them targets general re-
source isolation bugs as KIT does for Linux namespaces.
OS-level virtualization security. One line of work in OS-level
virtualization security focuses on the security of container run-
time and orchestration toolchains [6, 12, 74, 78, 84]. For instance,
one work [78] studies the security implications of using container
images in the production cloud. KIT is more related to another
line of work that focuses on the security of resource isolation and
access control mechanisms provided by the kernel. For example,

Gao et al. [35] explore using out-of-band workloads to escape the
control group resource limit. Lin et al. [55] study existing attacks
against Linux security mechanisms and proposed defense solutions.
CNTR [80] reduces the container attack surface by reducing the con-
tainer image size without compromising functionality. Baston [63]
hardens Linux container network stacks via restricted visibility
and network traffic isolation. Sun et al. [77] propose the security
namespace to enable autonomous security policy configurations
for containers. SCONE [4] is a container with Intel SGX support to
encrypt I/O data. X-Containers [73] leverages the exokernel and
libOS [25] to enforce the inter-container resource isolation with
small attack surfaces.
Kernel data flow analysis. Identifying possible container interfer-
ence requires data flow analysis on the kernel. Recent work in this
domain can be divided into two categories. One category, such as
Razzer [44], uses static analysis (e.g., points-to analysis) to identify
potential data races. By contrast, Krace [82] and Snowboard [38]
rely on dynamic executions. Krace executes many random kernel
test inputs and monitors data flows by instrumenting every shared
kernel memory access. Snowboard takes a set of system call se-
quences as inputs and dynamically profiles the shared memory
access triggered by each sequence. Then it identifies overlapped
shared memory accesses between two sequence profiles as possible
data flows. KIT adopts a data flow analysis framework that is similar
to Snowboard, but introduces new test case clustering strategies
and leverages compiler instrumentation to efficiently profile kernel
memory accesses.
Non-interference. Non-interference has been used in OS verifica-
tion [27, 54, 61, 75] and model checking [26] to prove information
flow security for critical kernel subsystems. Li et al. [54] prove non-
interference for a retrofitted Linux KVM hypervisor that ensures
the confidentiality and integrity of VM data. Although verification
can provide strong correctness guarantees, it struggles to scale
to large and complex systems, such as Linux, and still relies on
assumptions that need to be tested [32]. Hence, some prior test-
ing frameworks [10, 65] check non-interference for bug detection,
but mainly focus on discovering side-channel vulnerabilities in
user-space software. KIT focuses instead on testing the isolation of
OS-level virtualization.

9 CONCLUSION

This work introduces KIT, a framework to find functional interfer-
ence bugs in OS-level virtualization. KIT uses a general method,
functional interference testing, that tackles two major challenges in
finding functional interference bugs. First, to generate effective test
cases that can trigger functional interference, KIT uses a dynamic
data flow analysis to identify possible inter-container data flows
in the test case and prioritize test cases that exercise unique and
untested functional interference. Second, KIT automatically identi-
fies classes of false-positive functional interference that are caused
by kernel non-determinism and namespace-irrelevant kernel re-
sources so that KIT can accurately report functional interference
bugs. KIT has found 9 new functional interference bugs and many
of them have serious impact on container security. Additionally,KIT

438

KIT: Testing OS-Level Virtualization for Functional Interference Bugs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

can detect many known severe functional interference bugs, show-
ing its effectiveness in detecting vulnerable functional interference
bugs.

ACKNOWLEDGMENTS

This work was funded in part by NSF under grants CNS-2140305
and CNS-2145888 and Google. We thank all anonymous review-
ers for their feedback, which greatly improved the paper. We also
thank Adil Ahmad for his helpful suggestions on the design and
evaluation.

A ARTIFACT APPENDIX

A.1 Abstract

KIT is a dynamic testing tool to systematically discover functional
interference bugs in OS-level virtualization. Currently, the KIT
artifact supports testing Linux namespaces.

A.2 Artifact check-list (meta-information)

• Program: kit-artifact
• Compilation: The required compilers include gcc, g++, go, and a
customized gcc. They can be installed via the script provided.
• Data set: A test program corpus generated by Syzkaller. It can be
downloaded via the script provided.
• Run-time environment: Linux systems; root access required.
• Hardware: x86-64 CPU; 128GB memory
• Output: Bug reports.
• Experiments: Find the new functional interference bugs; Repro-
duce the known functional interference bugs.
• How much disk space required (approximately)?: 256GB
• How much time is needed to prepare workflow (approxi-

mately)?: 1 hour
• How much time is needed to complete experiments (approxi-

mately)?: 1 day
• Publicly available?: Yes
• Code licenses (if publicly available)?: GPL-3.0 license.
• Data licenses (if publicly available)?: GPL-3.0 license.
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.7240401

A.3 Description

A.3.1 How to access. The source code of this artifact is available
at Zenodo [56] and GitHub: https://github.com/rssys/kit-artifact

A.3.2 Hardware dependencies. The artifact evaluation requires a
machine with x86-64 CPU, 128GB memory, and 256GB storage.

A.3.3 Software dependencies. The artifact evaluation requires Linux
systems with QEMU and KVM support and root access. Some op-
tional experiments require Docker.

A.3.4 Data sets. The artifact will generate the test cases using a
test program corpus generated by Syzkaller as input. The dataset
can be downloaded via the script provided in the artifact.

A.4 Installation

Please see the README.md file in https://github.com/rssys/kit-artifact.
First, install the dependencies required to build KIT. Next, follow
the instructions to run a script, which will (1) install the go compiler;
(2) patch the Syzkaller code used by the artifact; (3) build the whole

artifact, which includes the main testing framework, Syzkaller, a
system call trace decoding library, and a customized gcc compiler.
Then, prepare the test input required for the artifact evaluation.
Run a script to set up the environment to find new functional
interference bugs, which will (1) build the instrumented Linux
kernel; (2) build a VM image; (3) download a Syzkaller test program
corpus. Run another script to set up the environment to reproduce
known functional interference bugs, which will download the pre-
built old Linux kernel and VM images to test.

A.5 Evaluation and expected results

The artifact evaluation will cover the following aspects that serve
as the key results of this paper: (1) the discovery of 9 functional
interference bugs with DF-IA test case generation strategy (Table 2,
Table 4); (2) the effectiveness evaluation of test report filtering
(Table 5); (3) the statistics on test report aggregation (Table 6); (4)
reproducing known functional interference bugs (Table 3). The
artifact provides several scripts to automatically run the whole
pipeline and reproduce the results. For more details regarding the
evaluation, please read the README.md file in https://github.com/
rssys/kit-artifact. Due to differences in test settings or randomness,
there might be slight differences between the results in the paper
and those from the artifact evaluation.

REFERENCES

[1] Adil Ahmad, Juhee Kim, Jaebaek Seo, Insik Shin, Pedro Fonseca, and Byoungy-
oung Lee. 2021. CHANCEL: Efficient Multi-client Isolation Under Adversar-
ial Programs. In 28th Annual Network and Distributed System Security Sympo-
sium (NDSS ’21). The Internet Society. https://www.ndss-symposium.org/ndss-
paper/chancel-efficient-multi-client-isolation-under-adversarial-programs/

[2] Adil Ahmad, Sangho Lee, Pedro Fonseca, and Byoungyoung Lee. 2021. Kard:
Lightweight Data Race Detection with per-Thread Memory Protection. In Pro-
ceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’21) (Virtual, USA).
Association for Computing Machinery, New York, NY, USA, 647–660. https:
//doi.org/10.1145/3445814.3446727

[3] Linux Kernel Archives. 2022. Linux Kernel Selftests. https://www.kernel.org/
doc/Documentation/kselftest.txt.

[4] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L.
Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
’16). USENIX Association, Savannah, GA, 689–703. https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/arnautov

[5] Fabrice Bellard. 2022. Documentation/QMP. https://wiki.qemu.org/
Documentation/QMP.

[6] Thanh Bui. 2015. Analysis of docker security. arXiv preprint arXiv:1501.02967
(2015).

[7] Alexander Bulekov, Bandan Das, Stefan Hajnoczi, and Manuel Egele. 2022. Mor-
phuzz: Bending (Input) Space to Fuzz Virtual Devices. In 31st USENIX Secu-
rity Symposium (Security ’22). USENIX Association, Boston, MA, 1221–1238.
https://www.usenix.org/conference/usenixsecurity22/presentation/bulekov

[8] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. 2020. SoK:
Understanding the Prevailing Security Vulnerabilities in TrustZone-assisted TEE
Systems. In 2020 IEEE Symposium on Security and Privacy (S&P ’20). 1416–1432.
https://doi.org/10.1109/SP40000.2020.00061

[9] Vitaly Chaykovsky. 2022. strace. https://strace.io.
[10] Jia Chen, Yu Feng, and Isil Dillig. 2017. Precise Detection of Side-Channel

Vulnerabilities Using Quantitative Cartesian Hoare Logic. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security (CCS
’17) (Dallas, Texas, USA). Association for Computing Machinery, 875–890. https:
//doi.org/10.1145/3133956.3134058

[11] Weilong Chen. 2014. net: fix "queues" uevent between network names-
paces. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/
?id=82ef3d5d5f3ffd757c960693c4fe7a0051211849.

[12] Theo Combe, Antony Martin, and Roberto Di Pietro. 2016. To Docker or Not
to Docker: A Security Perspective. IEEE Cloud Computing 3, 5 (2016), 54–62.

439

https://doi.org/10.5281/zenodo.7240401
https://github.com/rssys/kit-artifact
https://github.com/rssys/kit-artifact
https://github.com/rssys/kit-artifact
https://github.com/rssys/kit-artifact
https://www.ndss-symposium.org/ndss-paper/chancel-efficient-multi-client-isolation-under-adversarial-programs/
https://www.ndss-symposium.org/ndss-paper/chancel-efficient-multi-client-isolation-under-adversarial-programs/
https://doi.org/10.1145/3445814.3446727
https://doi.org/10.1145/3445814.3446727
https://www.kernel.org/doc/Documentation/kselftest.txt
https://www.kernel.org/doc/Documentation/kselftest.txt
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://wiki.qemu.org/Documentation/QMP
https://wiki.qemu.org/Documentation/QMP
https://www.usenix.org/conference/usenixsecurity22/presentation/bulekov
https://doi.org/10.1109/SP40000.2020.00061
https://strace.io
https://doi.org/10.1145/3133956.3134058
https://doi.org/10.1145/3133956.3134058
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=82ef3d5d5f3ffd757c960693c4fe7a0051211849
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=82ef3d5d5f3ffd757c960693c4fe7a0051211849

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Congyu Liu, Sishuai Gong, and Pedro Fonseca

https://doi.org/10.1109/MCC.2016.100
[13] The MITRE Corporation. 2018. CVE-2018-14646. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2018-14646.
[14] The MITRE Corporation. 2018. CVE-2018-18955. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2018-18955.
[15] The MITRE Corporation. 2018. CVE-2018-6559. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2018-6559.
[16] The MITRE Corporation. 2019. CVE-2019-11815. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2019-11815.
[17] The MITRE Corporation. 2019. CVE-2019-20794. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2019-20794.
[18] The MITRE Corporation. 2020. CVE-2020-29373. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2020-29373.
[19] The MITRE Corporation. 2021. CVE-2021-38209. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2021-38209.
[20] The MITRE Corporation. 2022. CVE - CVE. https://cve.mitre.org.
[21] The MITRE Corporation. 2022. CVE-2022-0492. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2022-0492.
[22] Heming Cui, Jiri Simsa, Yi-Hong Lin, Hao Li, Ben Blum, Xinan Xu, Junfeng Yang,

Garth A. Gibson, and Randal E. Bryant. 2013. Parrot: A Practical Runtime for
Deterministic, Stable, and Reliable Threads. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (SOSP ’13) (Farminton, Penn-
sylvania). Association for Computing Machinery, New York, NY, USA, 388–405.
https://doi.org/10.1145/2517349.2522735

[23] Willem de Bruijn. 2019. ipv6: elide flowlabel check if no exclusive leases exist.
https://lists.openwall.net/netdev/2019/07/07/50.

[24] LTP developers. 2022. LTP - Linux Test Project. http://linux-test-project.github.
io.

[25] D. R. Engler, M. F. Kaashoek, and J. O’Toole. 1995. Exokernel: An Operating Sys-
tem Architecture for Application-Level Resource Management. In Proceedings of
the Fifteenth ACM Symposium on Operating Systems Principles (SOSP ’95) (Copper
Mountain, Colorado, USA). Association for Computing Machinery, New York,
NY, USA, 251–266. https://doi.org/10.1145/224056.224076

[26] Roya Ensafi, Jong Chun Park, Deepak Kapur, and Jedidiah R. Crandall. 2010. Idle
Port Scanning and Non-interference Analysis of Network Protocol Stacks Using
Model Checking. In 19th USENIX Security Symposium (Security ’10). USENIX Asso-
ciation, Washington, DC. https://www.usenix.org/conference/usenixsecurity10/
idle-port-scanning-and-non-interference-analysis-network-protocol-stacks

[27] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. 2017.
Komodo: Using Verification to Disentangle Secure-Enclave Hardware from Soft-
ware. In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP
’17) (Shanghai, China). Association for Computing Machinery, New York, NY,
USA, 287–305. https://doi.org/10.1145/3132747.3132782

[28] Beat Fluri, Michael Wursch, Martin PInzger, and Harald Gall. 2007. Change
Distilling:Tree Differencing for Fine-Grained Source Code Change Extraction.
IEEE Transactions on Software Engineering 33, 11 (2007), 725–743. https://doi.
org/10.1109/TSE.2007.70731

[29] Pedro Fonseca, Cheng Li, and Rodrigo Rodrigues. 2011. Finding Complex Con-
currency Bugs in Large Multi-Threaded Applications. In Proceedings of the
Sixth Conference on Computer Systems (Eurosys’ 11) (Salzburg, Austria). As-
sociation for Computing Machinery, New York, NY, USA, 215–228. https:
//doi.org/10.1145/1966445.1966465

[30] Pedro Fonseca, Rodrigo Rodrigues, and Björn B. Brandenburg. 2014. SKI: Exposing
Kernel Concurrency Bugs through Systematic Schedule Exploration. In 11th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
’14). USENIX Association, Broomfield, CO, 415–431. https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/fonseca

[31] Pedro Fonseca, Xi Wang, and Arvind Krishnamurthy. 2018. MultiNyx: A Multi-
Level Abstraction Framework for Systematic Analysis of Hypervisors. In Pro-
ceedings of the Thirteenth EuroSys Conference (Eurosys ’18) (Porto, Portugal).
Association for Computing Machinery, New York, NY, USA, Article 23, 12 pages.
https://doi.org/10.1145/3190508.3190529

[32] Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy. 2017. An
Empirical Study on the Correctness of Formally Verified Distributed Systems.
In Proceedings of the Twelfth EuroSys Conference (Eurosys ’17). Belgrade, Serbia.
https://dl.acm.org/doi/10.1145/3064176.3064183

[33] Inc. Free Software Foundation. 2022. GIMPLE (GNU Compiler Collection (GCC)
Internals). https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html.

[34] Xing Gao, Zhongshu Gu, Mehmet Kayaalp, Dimitrios Pendarakis, and Haining
Wang. 2017. ContainerLeaks: Emerging Security Threats of Information Leakages
in Container Clouds. In 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN ’17). 237–248. https://doi.org/10.1109/
DSN.2017.49

[35] Xing Gao, Zhongshu Gu, Zhengfa Li, Hani Jamjoom, and Cong Wang. 2019. Hou-
dini’s Escape: Breaking the Resource Rein of Linux Control Groups. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’19) (London, United Kingdom). Association for Computing Machinery,
New York, NY, USA, 1073–1086. https://doi.org/10.1145/3319535.3354227

[36] Xinyang Ge, Ben Niu, Robert Brotzman, Yaohui Chen, HyungSeok Han, Patrice
Godefroid, and Weidong Cui. 2021. HyperFuzzer: An Efficient Hybrid Fuzzer for
Virtual CPUs. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’21) (Virtual Event, Republic of Korea). Association
for Computing Machinery, New York, NY, USA, 366–378. https://doi.org/10.
1145/3460120.3484748

[37] J. A. Goguen and J. Meseguer. 1982. Security Policies and Security Models. In
1982 IEEE Symposium on Security and Privacy. 11–11. https://doi.org/10.1109/SP.
1982.10014

[38] Sishuai Gong, Deniz Altinbüken, Pedro Fonseca, and Petros Maniatis. 2021. Snow-
board: Finding Kernel Concurrency Bugs through Systematic Inter-Thread Com-
munication Analysis. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles (SOSP ’21) (Virtual Event, Germany). Association
for Computing Machinery, New York, NY, USA, 66–83. https://doi.org/10.1145/
3477132.3483549

[39] Google. 2022. google/syzkaller: syzkaller is an unsupervised coverage-guided
kernel fuzzer. https://github.com/google/syzkaller.

[40] Google. 2022. The Kernel Address Sanitizer (KASAN). https://www.kernel.org/
doc/html/v4.14/dev-tools/kasan.html.

[41] Jesse Hertz. 2022. TriforceLinuxSyscallFuzzer. https://github.com/nccgroup/
TriforceLinuxSyscallFuzzer.

[42] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel. 2016.
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data. In
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
’16). USENIX Association, Savannah, GA, 533–549. https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/hunt

[43] Docker Inc. 2022. Docker security | Docker Documentation. https://docs.docker.
com/engine/security/#kernel-namespaces.

[44] Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee, and
Insik Shin. 2019. Razzer: Finding Kernel Race Bugs through Fuzzing. In 2019
IEEE Symposium on Security and Privacy (S&P ’19) (San Francisco, CA). 754–768.
https://doi.org/10.1109/SP.2019.00017

[45] Dave Jones. 2022. Trinity: Linux system call fuzzer. https://github.com/
kernelslacker/trinity.

[46] Michael Kerrisk. 2022. namespaces(7) — Linux manual page. https://man7.org/
linux/man-pages/man7/namespaces.7.html.

[47] Michael Kerrisk. 2022. network_namespaces(7) — Linux manual page. https:
//man7.org/linux/man-pages/man7/network_namespaces.7.html.

[48] Michael Kerrisk. 2022. syscalls(2) — Linux manual page. https://man7.org/linux/
man-pages/man2/syscalls.2.html.

[49] Michael Kerrisk. 2022. sysvipc(7) — Linux manual page. https://man7.org/linux/
man-pages/man7/sysvipc.7.html.

[50] Michael Kerrisk. 2022. veth(4) — Linux manual page. https://man7.org/linux/man-
pages/man4/veth.4.html.

[51] Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim, Yeongjin Jang, Insik Shin, and
Byoungyoung Lee. 2020. HFL: Hybrid Fuzzing on the Linux Kernel. In 27th
Annual Network andDistributed System Security Symposium (NDSS ’20) (SanDiego,
California, USA). The Internet Society. https://www.ndss-symposium.org/ndss-
paper/hfl-hybrid-fuzzing-on-the-linux-kernel/

[52] KUnit. 2022. KUnit - Unit Testing for the Linux Kernel. https://kunit.dev/third_
party/kernel/docs/.

[53] Butler W. Lampson. 1973. A Note on the Confinement Problem. Commun. ACM
16, 10 (oct 1973), 613–615. https://doi.org/10.1145/362375.362389

[54] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang Hui. 2021. A
Secure and Formally Verified Linux KVM Hypervisor. In 2021 IEEE Symposium
on Security and Privacy (S&P ’21) (San Francisco, CA). 1782–1799. https://doi.
org/10.1109/SP40001.2021.00049

[55] Xin Lin, Lingguang Lei, YuewuWang, Jiwu Jing, Kun Sun, andQuan Zhou. 2018. A
Measurement Study on Linux Container Security: Attacks and Countermeasures.
In Proceedings of the 34th Annual Computer Security Applications Conference
(ACSAC ’18) (San Juan, PR, USA). Association for Computing Machinery, New
York, NY, USA, 418–429. https://doi.org/10.1145/3274694.3274720

[56] Congyu Liu, Sishuai Gong, and Pedro Foseca. [n. d.]. Artifact of KIT: Testing
OS-Level Virtualization for Functional Interference Bugs. https://doi.org/10.
5281/zenodo.7240401

[57] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. 2011. Dthreads: Efficient
Deterministic Multithreading. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles (SOSP ’11) (Cascais, Portugal). Association for
Computing Machinery, New York, NY, USA, 327–336. https://doi.org/10.1145/
2043556.2043587

[58] LOCKDEP 2006. ANNOUNCE: Lock validator. http://lwn.net/Articles/185605/.
[59] Canonical Ltd. 2022. Linux Containers. https://linuxcontainers.org/.
[60] Dirk Merkel. 2014. Docker: lightweight Linux containers for consistent develop-

ment and deployment. Linux Journal 2014 (2014), 2.
[61] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke,

Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. 2013. seL4: From General
Purpose to a Proof of Information Flow Enforcement. In 2013 IEEE Symposium
on Security and Privacy (S&P ’13) (San Francisco, CA). 415–429. https://doi.org/

440

https://doi.org/10.1109/MCC.2016.100
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-14646
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-14646
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-18955
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-18955
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6559
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6559
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11815
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11815
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-20794
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-20794
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-29373
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-29373
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-38209
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-38209
https://cve.mitre.org
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0492
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0492
https://doi.org/10.1145/2517349.2522735
https://lists.openwall.net/netdev/2019/07/07/50
http://linux-test-project.github.io
http://linux-test-project.github.io
https://doi.org/10.1145/224056.224076
https://www.usenix.org/conference/usenixsecurity10/idle-port-scanning-and-non-interference-analysis-network-protocol-stacks
https://www.usenix.org/conference/usenixsecurity10/idle-port-scanning-and-non-interference-analysis-network-protocol-stacks
https://doi.org/10.1145/3132747.3132782
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1145/1966445.1966465
https://doi.org/10.1145/1966445.1966465
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/fonseca
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/fonseca
https://doi.org/10.1145/3190508.3190529
https://dl.acm.org/doi/10.1145/3064176.3064183
https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
https://doi.org/10.1109/DSN.2017.49
https://doi.org/10.1109/DSN.2017.49
https://doi.org/10.1145/3319535.3354227
https://doi.org/10.1145/3460120.3484748
https://doi.org/10.1145/3460120.3484748
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/3477132.3483549
https://doi.org/10.1145/3477132.3483549
https://github.com/google/syzkaller
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/hunt
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/hunt
https://docs.docker.com/engine/security/#kernel-namespaces
https://docs.docker.com/engine/security/#kernel-namespaces
https://doi.org/10.1109/SP.2019.00017
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/network_namespaces.7.html
https://man7.org/linux/man-pages/man7/network_namespaces.7.html
https://man7.org/linux/man-pages/man2/syscalls.2.html
https://man7.org/linux/man-pages/man2/syscalls.2.html
https://man7.org/linux/man-pages/man7/sysvipc.7.html
https://man7.org/linux/man-pages/man7/sysvipc.7.html
https://man7.org/linux/man-pages/man4/veth.4.html
https://man7.org/linux/man-pages/man4/veth.4.html
https://www.ndss-symposium.org/ndss-paper/hfl-hybrid-fuzzing-on-the-linux-kernel/
https://www.ndss-symposium.org/ndss-paper/hfl-hybrid-fuzzing-on-the-linux-kernel/
https://kunit.dev/third_party/kernel/docs/
https://kunit.dev/third_party/kernel/docs/
https://doi.org/10.1145/362375.362389
https://doi.org/10.1109/SP40001.2021.00049
https://doi.org/10.1109/SP40001.2021.00049
https://doi.org/10.1145/3274694.3274720
https://doi.org/10.5281/zenodo.7240401
https://doi.org/10.5281/zenodo.7240401
https://doi.org/10.1145/2043556.2043587
https://doi.org/10.1145/2043556.2043587
http://lwn.net/Articles/185605/
https://linuxcontainers.org/
https://doi.org/10.1109/SP.2013.35
https://doi.org/10.1109/SP.2013.35
https://doi.org/10.1109/SP.2013.35

KIT: Testing OS-Level Virtualization for Functional Interference Bugs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

10.1109/SP.2013.35
[62] Nagarathnam Muthusamy. [n. d.]. ipc/msg: Fix msgctl(..., IPC_STAT,

...) between pid namespaces. https://github.com/torvalds/linux/commit/
39a4940eaa185910bb802ca9829c12268fd2c855.

[63] Jaehyun Nam, Seungsoo Lee, Hyunmin Seo, Phil Porras, Vinod Yegneswaran,
and Seungwon Shin. 2020. BASTION: A Security Enforcement Network Stack
for Container Networks. In 2020 USENIX Annual Technical Conference (ATC
’20). USENIX Association, 81–95. https://www.usenix.org/conference/atc20/
presentation/nam

[64] Omar S. Navarro Leija, Kelly Shiptoski, Ryan G. Scott, Baojun Wang, Nicholas
Renner, Ryan R. Newton, and Joseph Devietti. 2020. Reproducible Contain-
ers. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’20) (Lau-
sanne, Switzerland). Association for Computing Machinery, New York, NY, USA,
167–182. https://doi.org/10.1145/3373376.3378519

[65] Shirin Nilizadeh, Yannic Noller, and Corina S. Păsăreanu. 2019. DifFuzz: Differ-
ential Fuzzing for Side-Channel Analysis. In Proceedings of the 41st International
Conference on Software Engineering (ICSE ’19) (Montreal, Quebec, Canada). IEEE
Press, 176–187. https://doi.org/10.1109/ICSE.2019.00034

[66] Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. MoonShine: Opti-
mizing OS Fuzzer Seed Selection with Trace Distillation. In 27th USENIX Se-
curity Symposium (Security ’18). USENIX Association, Baltimore, MD, 729–743.
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor

[67] The Chromium Projects. 2022. QUIC, a multiplexed transport over UDP. https:
//www.chromium.org/quic/.

[68] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon Wör-ner, and
Thorsten Holz. 2021. Nyx: Greybox Hypervisor Fuzzing using Fast Snapshots
and Affine Types. In 30th USENIX Security Symposium (Security ’21). USENIX
Association, 2597–2614. https://www.usenix.org/conference/usenixsecurity21/
presentation/schumilo

[69] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel,
and Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback Fuzzing for OS
Kernels. In 26th USENIX Security Symposium (Security ’17). USENIX Association,
Vancouver, BC, 167–182. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/schumilo

[70] Sergej Schumilo, Cornelius Aschermann, Andrea Jemmett, Ali Abbasi, and
Thorsten Holz. 2022. Nyx-Net: Network Fuzzing with Incremental Snapshots. In
Proceedings of the Seventeenth European Conference on Computer Systems (EuroSys
’22) (Rennes, France). Association for Computing Machinery, New York, NY, USA,
166–180. https://doi.org/10.1145/3492321.3519591

[71] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
Data Analytics in the Cloud Using SGX. In 2015 IEEE Symposium on Security and
Privacy (S&P ’15). 38–54. https://doi.org/10.1109/SP.2015.10

[72] Ben Segall. 2022. pidns: fix set/getpriority and ioprio_set/get in PRIO_USER
mode. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/
?id=8639b46139b0e4ea3b1ab1c274e410ee327f1d89.

[73] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan, Christina De-
limitrou, Robbert Van Renesse, and Hakim Weatherspoon. 2019. X-Containers:
Breaking Down Barriers to Improve Performance and Isolation of Cloud-Native
Containers. In Proceedings of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS
’19) (Providence, RI, USA). Association for Computing Machinery, New York, NY,
USA, 121–135. https://doi.org/10.1145/3297858.3304016

[74] Rui Shu, Xiaohui Gu, and William Enck. 2017. A Study of Security Vulnera-
bilities on Docker Hub. In Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy (CODASPY ’17) (Scottsdale, Arizona,
USA). Association for Computing Machinery, New York, NY, USA, 269–280.
https://doi.org/10.1145/3029806.3029832

[75] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney, James Bornholt, Em-
ina Torlak, and Xi Wang. 2018. Nickel: A Framework for Design and Verifi-
cation of Information Flow Control Systems. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’18). USENIX Association,
Carlsbad, CA, 287–305. http://www.usenix.org/conference/osdi18/presentation/
sigurbjarnarson

[76] Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu, Yu Jiang, Ting Chen, and
Aiguo Cui. 2021. HEALER: Relation Learning Guided Kernel Fuzzing. In Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating Systems Principles (SOSP
’21) (Virtual Event, Germany). Association for Computing Machinery, New York,
NY, USA, 344–358. https://doi.org/10.1145/3477132.3483547

[77] Yuqiong Sun, David Safford, Mimi Zohar, Dimitrios Pendarakis, Zhongshu Gu,
and Trent Jaeger. 2018. Security Namespace: Making Linux Security Frame-
works Available to Containers. In 27th USENIX Security Symposium (Security
’18). USENIX Association, Baltimore, MD, 1423–1439. https://www.usenix.org/
conference/usenixsecurity18/presentation/sun

[78] Byungchul Tak, Canturk Isci, Sastry Duri, Nilton Bila, Shripad Nadgowda, and
James Doran. 2017. Understanding Security Implications of Using Containers
in the Cloud. In 2017 USENIX Annual Technical Conference (ATC ’17). USENIX
Association, Santa Clara, CA, 313–319. https://www.usenix.org/conference/
atc17/technical-sessions/presentation/tak

[79] KUWAZAWA Takuya. 2017. netfilter: ipvs: Fix inappropriate output
of procfs. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=c5504f724c86ee925e7ffb80aa342cfd57959b13.

[80] Jörg Thalheim, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci. 2018. Cntr:
Lightweight OS Containers. In 2018 USENIX Annual Technical Conference (ATC
’18). USENIX Association, Boston, MA, 199–212. https://www.usenix.org/
conference/atc18/presentation/thalheim

[81] Andrei Vagin. 2017. net/unix: don’t show information about sockets from other
namespaces. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=0f5da659d8f18.

[82] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. 2020. Krace:
Data Race Fuzzing for Kernel File Systems. In 2020 IEEE Symposium on Security
and Privacy (S&P ’20) (San Francisco, CA). 1643–1660. https://doi.org/10.1109/
SP40000.2020.00078

[83] Nanzi Yang, Wenbo Shen, Jinku Li, Yutian Yang, Kangjie Lu, Jietao Xiao, Tianyu
Zhou, Chenggang Qin, Wang Yu, Jianfeng Ma, and Kui Ren. 2021. Demons in the
Shared Kernel: Abstract Resource Attacks Against OS-Level Virtualization. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’21) (Virtual Event, Republic of Korea). Association for Computing
Machinery, 764–778. https://doi.org/10.1145/3460120.3484744

[84] Ahmed Zerouali, Tom Mens, Gregorio Robles, and Jesus M. Gonzalez-Barahona.
2019. On the Relation between Outdated Docker Containers, Severity Vulnera-
bilities, and Bugs. In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER ’19). 491–501. https://doi.org/10.1109/
SANER.2019.8668013

[85] Liping Zhang. 2022. netfilter: conntrack: do not dump other netns’s conntrack
entries via proc. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=e77e6ff502ea3d193872b5b9033bfd9717b36447.

[86] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed M. Azab,
and Ruowen Wang. 2019. PeX: A Permission Check Analysis Framework for
Linux Kernel. In 28th USENIX Security Symposium (Security ’19). USENIX As-
sociation, Santa Clara, CA, 1205–1220. https://www.usenix.org/conference/
usenixsecurity19/presentation/zhang-tong

[87] Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca. 2021. On-Demand-Fork: A
Microsecond Fork for Memory-Intensive and Latency-Sensitive Applications. In
Proceedings of the Sixteenth European Conference on Computer Systems (EuroSys
’21) (Online Event, United Kingdom). Association for Computing Machinery, New
York, NY, USA, 540–555. https://doi.org/10.1145/3447786.3456258

[88] Wenjia Zhao, Kangjie Lu, Yong Qi, and Saiyu Qi. 2020. MPTEE: Bringing Flexible
and Efficient Memory Protection to Intel SGX. In Proceedings of the Fifteenth
European Conference on Computer Systems (EuroSys ’20) (Heraklion, Greece).
Association for Computing Machinery, New York, NY, USA, Article 18, 15 pages.
https://doi.org/10.1145/3342195.3387536

Received 2022-07-07; accepted 2022-09-22

441

https://doi.org/10.1109/SP.2013.35
https://doi.org/10.1109/SP.2013.35
https://github.com/torvalds/linux/commit/39a4940eaa185910bb802ca9829c12268fd2c855
https://github.com/torvalds/linux/commit/39a4940eaa185910bb802ca9829c12268fd2c855
https://www.usenix.org/conference/atc20/presentation/nam
https://www.usenix.org/conference/atc20/presentation/nam
https://doi.org/10.1145/3373376.3378519
https://doi.org/10.1109/ICSE.2019.00034
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor
https://www.chromium.org/quic/
https://www.chromium.org/quic/
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://doi.org/10.1145/3492321.3519591
https://doi.org/10.1109/SP.2015.10
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8639b46139b0e4ea3b1ab1c274e410ee327f1d89
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8639b46139b0e4ea3b1ab1c274e410ee327f1d89
https://doi.org/10.1145/3297858.3304016
https://doi.org/10.1145/3029806.3029832
http://www.usenix.org/conference/osdi18/presentation/sigurbjarnarson
http://www.usenix.org/conference/osdi18/presentation/sigurbjarnarson
https://doi.org/10.1145/3477132.3483547
https://www.usenix.org/conference/usenixsecurity18/presentation/sun
https://www.usenix.org/conference/usenixsecurity18/presentation/sun
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tak
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tak
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c5504f724c86ee925e7ffb80aa342cfd57959b13
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c5504f724c86ee925e7ffb80aa342cfd57959b13
https://www.usenix.org/conference/atc18/presentation/thalheim
https://www.usenix.org/conference/atc18/presentation/thalheim
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0f5da659d8f18
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0f5da659d8f18
https://doi.org/10.1109/SP40000.2020.00078
https://doi.org/10.1109/SP40000.2020.00078
https://doi.org/10.1145/3460120.3484744
https://doi.org/10.1109/SANER.2019.8668013
https://doi.org/10.1109/SANER.2019.8668013
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e77e6ff502ea3d193872b5b9033bfd9717b36447
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e77e6ff502ea3d193872b5b9033bfd9717b36447
https://www.usenix.org/conference/usenixsecurity19/presentation/zhang-tong
https://www.usenix.org/conference/usenixsecurity19/presentation/zhang-tong
https://doi.org/10.1145/3447786.3456258
https://doi.org/10.1145/3342195.3387536

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Linux Namespaces
	2.2 Testing Kernel Resource Isolation
	2.3 Functional Interference Detection

	3 Practical Functional Interference Testing
	3.1 Efficient Test Case Generation
	3.2 Effective Functional Interference Bug Detection

	4 KIT Design
	4.1 Test Case Generation
	4.2 Test Case Execution
	4.3 Functional Interference Bug Detection
	4.4 Test Report Aggregation

	5 Implementation
	5.1 Test Case Generation
	5.2 Test Case Execution
	5.3 Functional Interference Bug Detection

	6 Evaluation
	6.1 Finding Functional Interference Bugs
	6.2 Detecting Known Isolation Bugs
	6.3 Test Case Generation
	6.4 Distilling Test Reports
	6.5 Performance

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected results

	References

